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ABSTRACT 

Vehicle cruising (individuals looking for parking and for-hire vehicles operating without a 
passenger) is a major contributor to traffic congestion in downtown Seattle. Still, the magnitude 
and location of vehicle cruising is poorly understood. To get a better understanding of where 
vehicles cruise, we propose a framework for using traffic sensor data. We generate most likely 
paths traversed through filtering out unrealistic behavior and incorporating routing. We break up 
individual trips via segmentation in terms of time and method of transportation. To guide future 
machine learning algorithms we visually label paths which appear to be cruising and propose a 
list of attributes to train the cruising classification algorithms. Ultimately, we create a 
preliminary heatmap of downtown Seattle that can be used to visualize the relative levels of 
cruising, once they are obtained from the machine learning algorithms.  
 

OVERVIEW 

Cruising has a significant impact on congestion and travel time reliability. Within the scope of 
our work, we define cruising vehicles as those that have already arrived at their destination and 
are driving around looking for a place to park as well as taxis, for-hire vehicles, and 
transportation network companies (TNCs) that are queued in traffic waiting to be hailed or to 
pick up another customer. 
 

As part of the Data Science for Social Good Program at the University of Washington, we are 
developing algorithms to quantify aggregated levels of vehicle traffic cruising by applying data 
science techniques to analyze a sample of anonymous travel sensor data.  
 

We have plans to differentiate between the aggregated footprint of vehicles trying to find 
on-street parking and the amount due to trip deadheading (vehicles for-hire that are driving 
without a passenger). This research has the potential to help transportation agencies, technology 
companies, and car companies predict the availability of parking and more accurately direct 
travelers with online, mobile, and connected tools, thereby reducing congestion, emissions, and 
fuel costs. 
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The end goals of this project are to synthesize a sample of anonymous sensor data into a heat 
map depicting the relative prevalence of cruising and to propose measurement standards for 
cruising activity, such as a cruising index. This approach could be incorporated into real time 
applications and would be a potential candidate for use in a linked data repository with strong 
governance, such as the University of Washington Transportation Data Collaborative. 

 

BACKGROUND 

The City of Seattle seeks to improve travel reliability, optimize the use of the right-of-way, 
improve the parking experience, reduce emissions, and lower transportation costs. There are two 
forces that are thought to be counterproductive to these goals: 
 

1. Cars searching for parking spots after they have already arrived at their destination. There 
have been studies  that suggest that as much as 30 percent of traffic in congested areas 1

could be due to parking cruising. A new study released by Inrix suggests Seattle parkers 
spend 58 hours per year searching for parking and ranks Seattle as number five in the 
U.S. worst cities for parking .  2

 

2. Vehicles for-hire (taxis, for-hire vehicles and app-based Transportation Network 
Companies) queuing in motion or waiting to be hailed. For every for-hire trip, there is 
inevitably a measurable amount of travel without a passenger, or deadheading. The share 
of vehicles for-hire is increasing at a faster rate than most other transportation modes and 
has profound implications for the city’s transportation network if current trends continue. 

 

In both cases, the City of Seattle has very little data regarding vehicle traffic cruising and has 
difficulty measuring the impact on Seattle streets. Better data would support informed 
transportation policies, use of the right-of-way, and infrastructure investments.  
 

METHODOLOGY 

ANONYMIZED DATA 

This project is exploring the use of traffic analysis sensors. The sensors have been placed in 
downtown Seattle to calculate travel times and help the city optimize the traffic signals along 
important corridors. They detect unique identifiers of mobile devices, which are hashed 
(anonymized) and salted (anonymized differently each day), providing a unique identifier that 
can be paired among locations for the day. The sample data set also includes a corresponding 
timestamp, and sensor identification number in a format such as shown in Figure 1. 
 

With these data, we can aggregate potential vehicle movements and discern signatures of 
cruising. However, this is not a straightforward process as there are some challenges in working 
with the data. 
 

1 Shoup, Donald C. "Cruising for parking." ​Transport Policy​ 13.6 (2006): 479-86. Web. 
2 Inrix. "Searching for Parking Costs Americans $73 Billion a Year | INRIX."​ INRIX​. N.p., n.d. Web.  
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The sample data set includes approximately 200,000 observations per hour from 63 sensors 
distributed across the central business district, covering approximately 37% of the total 
intersections in the area as seen in Figure 2.  
The data are highly noisy. There is a high prevalence of false positives (the sensor generates a 
reading that was not actually at the intersection, but rather a block or more away from the sensor) 
and false negatives (the sensor failed to read a device that actually did pass through the 
intersection).  
 

                                   Figure 1. Data example                                                  Figure 2. Sensor network 

           

DATABASE STORAGE 

In order to work with such a large dataset and centralize our work, we decided to incorporate 
RethinkDB, a free and open-source database that stores JSON documents with dynamic schemas. 
We chose not use a relational database because the sensor reads, organized into trips by unique 
identifier and timestamp, would produce a very sparse dataset if arranged in tabular form. 
Therefore, RethinkDB was a perfect fit for our project as we needed to have a relatively free 
form with our data and be able to quickly aggregate by unique trip identifier.  
 

SENSOR DETECTION RATE 

An important step in our methodology was getting a better understanding of the data itself. One 
of our first interests was understanding sensor detection rate. To get an answer, we devised an 
experiment based on our existing data. We chose to focus on 2nd Avenue due to its high sensor 
coverage. First, we created a subset of trips that hit the starting sensor and hit the ending sensor 
without hitting any other sensor off of 2nd Avenue in between. Therefore, it was extremely 
likely that the vehicle travelled all the way down 2nd Avenue without deviating from the path. 
Given they hit the start and end sensor, the aggregate percentages of times were read by other 
sensors can be seen below in Figure 3.  
 

This experiment showed us that there is high variability among sensor detection rates, with 
sensors such as 2nd and Pine performing well (it captured 58% of the vehicles that hit both the 
start and end sensor without deviating from 2nd Ave) and sensors such as 2nd and University 
performing poorly (it captured 22% of the devices that hit both the start and end sensor without 
deviating from 2nd Ave). As the rate of false negatives was relatively high overall, it was clear 
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that we would need to understand how to correctly route individuals on the most likely path 
traversed. 
 

Figure 3. Sensor detection rate experiment 

 

PATH CORRECTION 

We observe several instances in the dataset where the same device is detected on neighboring 
sensors, either simultaneously or within a timespan short enough to make the journey between 
the sensors physically impossible. This causes two major problems: 
 

1. ‘Branching’ of the path, i.e., a movement up and down a block not within the path of the                  
unique traveler, as shown in Figure 4(A). 

2. A back-and-forth movement within the path as shown in Figure 4(B). 
 

Figure 4. Routing artifacts due to high sensor range 

 

We attribute this phenomenon to the range of the sensors, which extends for approximately one 
city block, and refer to the removal of these ‘false positives’ as prefiltering. We observe that the 
signal strength of the false positives is consistently lower than the detections made on the actual 
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path, which is the metric used for removing the false positives. We remove any detections of the 
same unique identifier address on different sensors within a timespan of three seconds. An 
example of a prefiltered path can be seen in Figure 5(B). Note that this path has been routed for 
the sake of visualizing the artifacts not accounted for by prefiltering. 

Figure 5. Path correction sequence 

 

After prefiltering, additional steps are taken to account for artifacts on time-scales larger than 
three seconds. Namely, if a vehicle is waiting at a traffic light between two sensors, it can still be 
detected by both, sometimes with an alternating pattern. If these alternating path segments occur 
on a two-way street, they produce the “back-and-forth” artifact of Figure 4(B). If they occur on a 
one-way street, the routing algorithm must direct the vehicle around the adjacent block to 
account for the apparent movement. This effect is called “looping” and can be seen in Figure 
5(B). We repair this by summing the time spent at each alternating sensor, and editing the sensor 
IDs to match that of the sensor by which the traveler spent the most time. Similarly, pedestrians 
or cyclists moving against traffic on a one-way street will be routed onto side-streets, producing 
a zipper-like path (uppermost edge of the path in Figure 5(B)), which we repair by using an 
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undirected graph in place of a directed graph for trip segments deemed to involve walking or 
cycling versus driving (see the next section). Figure 5(C) demonstrates an example of a routed 
path after these corrections. 
 

The sensors installed in downtown Seattle do not cover every intersection and varying sensor 
detection rates create unrealistic travel paths. To create realistic paths, Dijkstra’s shortest path 
algorithm was used on a directed graph of downtown Seattle to fill in the most likely 
intersections crossed in a path. We extracted node (intersection) and edge information of 
downtown Seattle from OpenStreetMaps, inputted the information into NetworkX to create a 
directed graph, and created a lookup dictionary based on sensor to sensor shortest path computed 
from Dijkstra’s algorithm. This lookup dictionary was used to fill additional intersection 
information in the paths, thus correcting the paths. 
 

PATH SEGMENTATION 

Three conditions require separation of travelers’ paths into two or more segments. We refer to 
this procedure as segmentation. The first condition is a gap in sensor reads long enough to 
indicate that the traveler left the sensor grid. In this case, to consider their entire path as a single 
journey would be to artificially increase the likelihood of labeling it as an instance of cruising, 
given that return trips into the grid may cross prior paths and increase overall convolution. This 
type of error is particularly likely if travelers re-enter the grid at points other than those by which 
they exited. In such a case, segmentation is necessary to prevent the routing algorithm from 
connecting exit and reentry nodes by the shortest path through the grid. We have thus far 
designated gaps in reads of ten or more minutes as necessary segmentation points, though this 
designation requires further visual and programmatic testing. 
 

The second type of segmentation pertains to trips containing stops of ten or more minutes. We 
assume the likelihood of a vehicle stopping in traffic for this duration is negligibly small. 
Therefore the likelihood is high that the traveler is either not inside a motor vehicle (and thus 
cannot be cruising), or they have parked. In either case, we split the overall trip into pre- and 
post-stop segments (see Figure 5(D)).  
 

Depending on the eventual scheme for classifying trips as cruising or not cruising, we may 
choose to incorporate gap segmentation, stop segmentation, or both. A machine learning 
approach may very well benefit from the retention of stops within trips, as this could be a feature 
indicative of cruising (i.e. a wandering path followed by a stop could be an instance of cruising 
for parking, while a wandering path followed by straight-line movement at high speed is 
probably not). If instead we employ a mechanistic classification approach, it may be more 
straightforward to consider each instance of continuous driving separately. In either case, we 
have implemented an option for retaining the sensor reads from a stop on each of the segments 
after splitting. 
 

The third type of segmentation involves separating trips at points where the mode of 
transportation likely changed. Sensors do not exclusively detect drivers, but pick up signals from 
walkers, bikers, and bus riders as well. We used velocity-based segmentation following path 
correction with Dijkstra’s algorithm, to determine which paths segments were most likely 
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walkers versus drivers. When the majority of the path segments are believed to be walking, the 
paths are filtered out. 
 

PRELIMINARY FINDINGS 

CRUISING IDENTIFICATION 

Through visualizing different paths of the unique travelers, we are able to see notable 
occurrences of cruising in Figure 6. Visual indications of cruising include, but are not limited to, 
paths looping over themselves, paths traveling only blocks away from the start position, and 
paths with high distance travelled but similar starting and ending points. These paths were 
indicative of individuals looking for parking and TNC circling throughout downtown Seattle. We 
label these paths and can use them for supervised learning training. 
 

Figure 6. Visual identification of cruising and not cruising paths. 

 

Additionally, metadata was generated for each of the unique paths. These data provide a useful 
vectorization of the paths and can be inputted into various machine learning algorithms. Table 1 
contains a list of possible features to be used in cruising identification along with a description of 
the features. 
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Table 1. Features considered in cruising identification 
 
Attribute Name Description Purpose 

strength Signal strength from sensor 
(decibels) 

We will see if there is a difference in 
signal strength from drivers versus 
walkers which will help to identify the 
vehicles cruising. 

velocity Velocity traveled per path segment 
(meters per second) 

It is possible that vehicles drive more 
slowly when looking for parking or 
looking to pick up a passenger. 

sensor_hits Total number of unique sensors hit 
in the trip 

Vehicles cruising might hit a higher 
amount of unique sensors. 

hit_total The total number of times the 
intersection was hit in the path 

We can see if the vehicle continues to 
come back to the same intersection. 

trip_duration_time Total trip time (seconds) A longer trip duration more likely 
characteristic of cruising. 

shortest_distance Vincenty distance from start to end 
point (meters) 

Short distance between start and end 
points more likely can show paths 
circling generally in the same area.  

dijkstra_distance Total distance of routed trip 
following Dijkstra’s algorithm 
(meters) 

We expect vehicles cruising to have a 
longer trip. 

dijkstra_vs_vincenty
_ratio 

Vincenty distance from start to end 
point to Dijkstra’s distance of 
overall path ratio 

Cruising vehicles might have a higher 
Dijkstra-to-Vincenty ratio than average 
vehicles.  

avg_speed Average velocity of the trip (meters 
per second) 

The average speed may be different for 
cruising cars vs. non-cruising cars. 

max_speed Maximum speed of the trip (meters 
per second) 

The maximum speed will be different for 
pedestrians and vehicles. 

avg_sensor_strength Average sensor strength (decibels), 
where sensors exist 

Sensor strength may differ for vehicles 
and pedestrians. 

longest_stop_time Longest stop duration (seconds) Vehicles stopping may have actually 
parked. 
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SENSOR NETWORK 

Overall, we have good reason to believe that the repurposing of the sensor network will lead to 
detection of cruising. To showcase this, we built a proof-of-concept heatmap visualization using 
the same data inputs needed for the final cruising heatmap. The proof-of-concept heatmap uses 
aggregated intersection-to-intersection traffic flow from our routed data and can be seen in 
Figure 7. To produce our final cruising heatmap, we need to only include paths that show signs 
of cruising, instead of all paths traversed, in the aggregation process. 
 
 

Figure 7. Proof-of-concept heat map based on all routed data 

 

 

NEXT STEPS 

For this project, we have spent a large majority of our time transforming the data from mere 
sensor hits to most likely path traversed. Now that we have the latter, we can begin to think about 
implementing large-scale machine learning techniques for cruising identification. 
 

One of the crucial steps in defining a cruising classification algorithm is to identify a useful 
representation for the space of paths. Many traditional classification and clustering algorithms 
are designed to work with vectors of fixed dimension and cannot be applied out of the box. In 
our setting we are working with time series, which can be either identified as a observations of a 
process on the sensor network, or a spatio-temporal process in the plane, and neither of those 
have standard distributions or metric structure to help us out. While there exist graph-based 
algorithms to detect loops in graphs (based on depth first search or the properties of the 
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adjacency matrix), cruising behavior which does not include passing through the same node is 
harder to detect through intrinsic graph properties and may require using the geospatial locations 
of the sensors. Further, graph clustering algorithms aim to cluster nodes of the graph, and in 
order to be adapted to paths, they require some notion of similarity of cruising paths. Similar is 
the situation with distance clustering approaches: we need to define a similarity measure which 
can work with paths of different lengths and can handle certain invariances, e.g. a clockwise loop 
should be similar to a path circling counterclockwise. A recent work by Bockholt et. al. explores 
ways to define similarity measures for paths in complex networks, and apply hierarchical 
clustering to classify paths taken by players of a board game. Unfortunately, for this application 
paths get clustered based on similar steps taken during the walk, which is not sufficient to 
identify cruising paths. Thus, further research is needed to discover cruising-distinguishing 
features, which can be achieved by evaluating a large set of features such as in Table 1, either 
through the careful study of the characteristics of a few cruising paths or by learning important 
features from a training set through variable selection algorithms. 
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